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Abstract

We consider possible leptonic three-body decays of spin-1/2 charge-asymmetric dark

matter. Assuming a general Dirac structure for the four-fermion contact interactions

of interest, we study the cosmic-ray electron and positron spectra and show that good

fits to the current data can be obtained for both charged-lepton-flavor-conserving and

flavor-violating decay channels. We find that different choices for the Dirac structure

of the underlying decay operator can be significantly compensated by different choices

for the dark-matter mass and lifetime. The decay modes we consider provide differing

predictions for the cosmic-ray positron fraction at energies higher than those currently

probed at the PAMELA experiment; these predictions might be tested at cosmic-ray

detectors like AMS-02. Additionally, we consider the constraints imposed on these

decays by neutrino and gamma-ray observatories.
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Chapter 1

Introduction

Cosmic rays have been studied extensively at various earth-, balloon- and satellite-

based experiments. Recently, the PAMELA satellite has observed an unexpected

rise in the cosmic-ray positron fraction from approximately 7 to 100 GeV [1]. This

feature is not explained by the expected background from the secondary production

of cosmic-rays positrons. Moreover, observations of the total flux of electrons and

positrons by Fermi-LAT [2] and H.E.S.S. [3] also show an excess over the predicted

background, up to an energy of ∼ 1 TeV. The presence of nearby pulsars could

provide an astrophysical explanation for these observations [4, 5]. Nevertheless, more

exotic scenarios remain possible. The annihilation of dark matter in the galactic halo

to electrons and positrons provides one such possibility, though generic annihilation

cross sections must be enhanced by a large boost factor in order to describe the

data [6, 7]. Alternatively, the excess could be explained by a TeV-scale decaying dark

matter candidate. (For a review, see, for example, Ref. [9].) In this scenario, fits to

the cosmic-ray data indicate that the dark matter must decay primarily to leptons

with a lifetime of O(1026) s.

While the thermal freeze-out of weakly-interacting, electroweak-scale dark matter

can naturally lead to the desired relic density, this is not the only possible frame-
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work that can account for the present dark matter abundance. Recently proposed

asymmetric dark-matter models relate the baryon- or lepton-number densities to the

dark-matter number density motivated by the fact that these quantities are not wildly

dissimilar [10, 11, 12, 13]. TeV-scale asymmetric dark-matter models have been con-

structed, for example, in Refs. [11, 12, 13]. The asymmetry between dark-matter

particles and antiparticles can lead to differences in the primary cosmic-ray spectra

of electrons and positrons with potentially measurable consequences [15]. Evidence for

such charge-asymmetric dark-matter decays would disfavor the pulsar explanation of

the e± excess [15]. In addition, charge-asymmetric dark-matter decays may allow one

to discern whether dark-matter decays are lepton-flavor-violating [16]. For example,

the cosmic-ray spectra that one expects if dark matter decays symmetrically to e+µ−

and e−µ+ are indistinguishable from those obtained by assuming flavor-conserving

decays to e+e− and µ+µ− with equal branching fractions; the same is not true if the

dark matter decays asymmetrically to e+µ− alone, 100% of the time.

References [15] and [16] study the cosmic-ray e± spectra assuming a number of

two-body charge-asymmetric dark-matter decays, with the latter work focusing on

lepton-flavor-violating modes. In this thesis, we extend this body of work to charge-

asymmetric three-body decays and, in particular, to modes that violate lepton flavor.

We assume a spin-1/2 dark-matter candidate that decays via four-fermion contact in-

teractions to two charged leptons and a light, stable neutral particle. For the present

purposes, the latter could either be a standard-model neutrino or a lighter dark-

matter component. Four-fermion interactions have a long history in the development

of the weak interactions, and one can easily imagine that dark-matter decays could be

the consequence of operators of this form, generated by higher-scale physics. More-

over, the possible presence of a neutrino in the primary decay may lead to interesting

signals at neutrino telescopes [17]. Unlike the two-body decays already considered

in the literature, the precise energy distribution of the decay products is affected by
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the Dirac matrix structure of these contact interactions, which is not known (unless

a model is specified). By considering the most general possibilities, we show that

different choices for the Dirac structure of the underlying decay operator can be sub-

stantially compensated by different choices for the dark-matter mass mψ and lifetime

τψ; while the best-fit values of these parameters change, the predicted spectra are not

dramatically altered. On the other hand, we find that the flavor structure of the decay

operator has a more significant effect. Assuming various lepton-flavor-conserving and

flavor-violating decay modes, we compute the resulting cosmic-ray spectra, perform-

ing χ2 fits to the data to determine the optimal dark-matter masses and lifetimes.

Like Refs. [15, 16], we obtain predictions for these spectra at e± energies that are

higher than those than can be probed accurately now. Future data from experiments

like AMS-02 [18] may provide the opportunity to test these predictions, and evaluate

them relative to other interpretations of the cosmic-ray positron excess.

Measurements of astrophysical neutrinos and gamma rays can also provide strong

constraints on the decays considered in this thesis [17, 39]. We show that a null

signal from IceCube/DeepCore after 5 years of running is enough to exclude several

decays with a statistical significance of 2σ or more. On the other hand, IceCube

measurements could yield a 5σ discovery for several decays within 5 years of running.

Now, it is possible that dark-matter decays occur but are not entirely responsible

for the e± excess observed by PAMELA and Fermi. In this case, it is still possible

to exclude/detect other regions of the dark-matter mass-lifetime parameter space

on the basis of the neutrino and gamma-ray fluxes. We have computed the regions

which can be excluded with a statistical significance of 2σ or more and the regions

which can be detected with a statistical significance of 5σ or more after 5 years of

running. The Fermi LAT has also released measurements of the extragalactic gamma-

ray background [39]. These data can be used to constrain dark-matter decays. We

show that none of the three-body decays which are used to explain the e± excess is
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in conflict with the Fermi data. However, as above, we can exclude other regions

of the parameter space that may be relevant if dark-matter decays represent only a

component of the e± excess. We compute the regions of the mass-lifetime parameter

space which can be excluded by the Fermi LAT extragalactic gamma-ray background

data with a statistical significance of 3σ or more.
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Chapter 2

Cosmic-Ray Propagation

To compute the relevant cosmic-ray fluxes, one must take into account that elec-

trons, positrons, neutrinos and gamma rays produced in dark-matter decays must

propagate through galactic and/or intergalactic space before reaching the Earth. For

the Milky Way Galaxy, we assume the spherically symmetric Navarro-Frenk-White

(NFW) dark-matter-halo density profile [23]

ρ(r) =
rc
r

ρ0

(1 + r/rc)
2 , (2.1)

where r denotes the distance from the center of the galaxy, ρ0 ' 0.26 GeV/cm3 and

rc ' 20 kpc.

2.1 Electron-Positron Propagation

The production rate of electrons/positrons per unit energy and per unit volume is

given by

Q(E, r) =
ρ(r)

mψ

(
1

τψ

dNe±

dE

)
, (2.2)

where mψ and τψ are the dark-matter mass and lifetime, respectively, and dNe±/dE

is the energy spectrum of electrons/positrons produced in the dark-matter decay. Let
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fe±(E, r) be the number density of electrons/positrons per unit energy. Then fe±

satisfies the transport equation [24]

0 = K(E)∇2fe±(E, r) +
∂

∂E
[b(E)fe±(E, r)] +Q(E, r). (2.3)

where K(E) is the diffusion coefficient which accounts for propagation through the

magnetic field of the galaxy and b(E) accounts for energy losses due to synchotron

radiation and inverse Compton scattering off of the interstellar radiation field. We

assume the MED propagation model described in Ref. [25] for which

K(E) = 0.0112ε0.70 kpc2/Myr (2.4)

and

b(E) = 10−16ε2 GeV/s, (2.5)

where ε = E/ (1 GeV). The diffusion zone is approximated as a cylinder with half-

height L = 4 kpc and radius R = 20 kpc. We require fe± (E, r) to vanish at the

boundary of this zone. The solution at the heliospheric boundary is then given by [26]

fe±(E) =
1

mψτψ

mψ∫

0

dE ′Ge±(E,E ′)
dNe±(E ′)

dE ′
. (2.6)

The Green’s function, Ge±(E,E ′), can be found in Ref. [26] in both an exact and an

approximate form. The approximate form is

Ge±(E,E ′) =
1016

E2
ea+b(Eδ−1−E′δ−1)θ(E ′ − E) , (2.7)

where a = −1.0203, b = −1.4493 and δ = 0.70. This is good to better than 15− 20%

over the whole range of energies.

The interstellar flux of electrons/positrons created in dark-matter decays is then
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given by

ΦDM
e± (E) =

c

4π
fe±(E), (2.8)

where c is the speed of light.

For the background fluxes, we use the Model 0 proposed by the Fermi LAT col-

laboration [27, 28]:

Φbkg
e− (E) =

(
82.0ε−0.28

1 + 0.224ε2.93

)
GeV−1m−2s−1sr−1 (2.9)

and

Φbkg
e+ (E) =

(
38.4ε−4.78

1 + 0.0002ε5.63
+ 24.0ε−3.41

)
GeV−1m−2s−1sr−1 , (2.10)

where, as before, ε = E/(1 GeV).

At the top of the Earth’s atmosphere, these fluxes must be corrected to account

for the effects of solar modulation [28]. The flux at the top of the atmosphere (TOA)

is related to the interstellar (IS) flux by

ΦTOA
e± (ETOA) =

E2
TOA

E2
IS

ΦIS
e±(EIS) , (2.11)

where EIS = ETOA + |e|φF and |e|φF = 550 MeV.

The total electron-positron flux is given by

Φtot
e = ΦDM

e− (E) + ΦDM
e+ (E) + kΦbkg

e− (E) + Φbkg
e+ (E) , (2.12)

where k is a free parameter which determines the normalization of the background

electron flux. In our numerical analysis, the best-fit values of k never deviate by

more than 2% from 0.84 and that fixing k at this value has a negligible effect on the

goodness of fits and the predicted spectra. Therefore, we set k = 0.84 from this point
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on. The positron fraction is given by

PF(E) =
ΦDM
e+ (E) + Φbkg

e+ (E)

Φtot
e

. (2.13)

2.2 Neutrino Propagation

Define the line-of-sight integral

J(∆Ω) =
1

∆Ω

∫

∆Ω

dΩ

∫

l.o.s.

ρ(s)ds , (2.14)

where ∆Ω is the region of the sky observed and ρ(s) is the NFW dark-matter-halo

density profile at a distance s from the Earth. Then the neutrino flux from dark-

matter decay in the Milky Way Galaxy is given by

dΦ(∆Ω, E)

dE
=

1

4π

1

mψτψ
J(∆Ω)∆Ω

∑

i

dNi

dE
, (2.15)

where mψ and τψ are the mass and lifetime of the dark matter particles, respectively,

and dNi/dE is the energy spectrum of neutrinos of flavor i. We consider the 2π sr

toward the galactic center. This gives

J (2π toward the galactic center) ' 2.3× 1022 GeV/cm2. (2.16)

The effective area of the IceCube/DeepCore detector is given by

A(E) ' ρiceNAσ
CC
νN (E)V (E) , (2.17)

where ρice ' 0.9 g/cm3, NA = 6.022 × 1023 g−1, σCC
νN (E) is the charged-current

neutrino-nucleon cross section [29] (for antineutrinos we must use the antineutrino-

nucleon cross section, σCC
ν̄N ) and V (E) is the effective volume of the detector; for the
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relevant energy range, it is a good approximation to take V (E) ' 0.04 km3 [30]. We

have parameterized σCC
νN (E) as a fifth-degree polynomial in E to better than 6% over

the range 60 GeV ≤ E ≤ 10000 GeV,

σCC
νN (E) '

5∑

i=0

ciε
i , (2.18)

where ε = E/ (1GeV), c0 = 6.35 × 10−38 cm2, c1 = 6.82 × 10−39 cm2, c2 = −5.82 ×

10−43 cm2, c3 = 1.10× 10−46 cm2, c4 = −1.37× 10−50 cm2 and c5 = 6.27× 10−55 cm2.

We have also parameterized σCC
ν̄N (E) as a fifth-degree polynomial in E to better than

0.5% over the range 60 GeV ≤ E ≤ 10000 GeV,

σCC
ν̄N (E) '

5∑

i=0

c̄iε
i , (2.19)

where c̄0 = 1.12 × 10−38 cm2, c̄1 = 3.65 × 10−39 cm2, c̄2 = −1.37 × 10−43 cm2, c̄3 =

2.61× 10−47 cm2, c̄4 = −3.66× 10−51 cm2, c̄5 = 1.77× 10−55 cm2.

The main background consists of atmospheric neutrinos. The background fluxes

over a half-sky for νµ and ν̄µ are given by Ref. [32]. We have fit the numerical data

with the following functions (inspired by Ref. [31]):

dΦνµ

dE
= aνµε

−bνµ

[
log
(
1 + cνµε

)

cνµε
+ dνµ

log
(
1 + eνµε

)

eνµε

]
(
cm2 s GeV

)−1
, (2.20)

where ε = E/ (1 GeV), aνµ = 66.20, bνµ = 1.96, cνµ = 3730.61, dνµ = −0.000011 and

eνµ = 0.014 and

dΦν̄µ

dE
= aν̄µε

−bν̄µ

[
log
(
1 + cν̄µε

)

cν̄µε
+ dν̄µ

log
(
1 + eν̄µε

)

eν̄µε

]
(
cm2 s GeV

)−1
, (2.21)

where aν̄µ = 1.26, bν̄µ = 2.09, cν̄µ = 35.56, dν̄µ = −0.00051 and eν̄µ = 0.0080.

The expressions for dΦνµ/dE and dΦν̄µ/dE are good to better than 6% and 8%,
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respectively, over the range 60 GeV ≤ E ≤ 10000 GeV.

The rate of neutrino events between energies Emin and Emax is given by

Γ =

∫ Emax

Emin

dEA(E)
dΦ(∆Ω)

dE
. (2.22)

2.3 Gamma-Ray Propagation

The gamma-ray flux from dark-matter decay consists of multiple components.

First of all, we have a gamma-ray flux which is due to photons created in the

decay shower. We will call this the local contribution to the gamma-ray flux. The

component of this flux which is due to dark-matter decays in the Milky Way Galaxy

can be computed using Eq. (2.15) where the sum over dNi/dE is now the energy

spectrum of photons created in the dark-matter decay. There is also an isotropic ex-

tragalactic component. Gamma rays originating at cosmological distances experience

a significant red shift as they travel to the Milky Way Galaxy due to the expansion

of the universe. The extragalactic flux measured at the Earth at a particular energy

E is due to gamma rays originally produced at higher energies in distant galaxies;

as these gamma rays traveled to the Earth, their energies were red-shifted down to

E. The more distant the galaxy in which they originated, the greater the red shift

experienced by the gamma rays. The explicit expression for the extragalactic flux,

which is essentially an integral over all red shifts, is given by (see, e.g., Refs. [33]

and [34]) (
dΦγ

dEdΩ

)(ex.)

local

=
c

4π

ΩDMρc
mψτψ

∫ ∞

0

dz
1

H(z)

dNγ

d (E(1 + z))
, (2.23)

where ΩDM ' 0.21, ρc ' 5.46× 10−6 GeV/cm3, z is the redshift and

H(z) = H0

√
ΩM(1 + z)3 + (1− ΩM) , (2.24)
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where H0 ' 72 (km/s) /Mpc and ΩM ' 0.26.

There is also a flux due to synchotron radiation produced by electrons and positrons

interacting with the galactic magnetic field. Since the field is so weak, this contribu-

tion is negligible at gamma-ray frequencies [33].

The second major component of the gamma-ray flux is due to inverse Compton

scattering of electrons and positrons produced in the dark-matter decay chain off of

interstellar/intergalactic photons. The interstellar radiation field (ISRF) consists of

three main components (see, e.g., Ref. [40]): cosmic microwave background (CMB)

radiation, starlight and infrared radiation from interstellar dust. The CMB com-

ponent is constant throughout the galaxy, and the number density is given by the

blackbody spectrum

nCMB(E) =
E2

π2

1

eE/T0 − 1
, (2.25)

where T0 ' 2.725 K. The other components are given by the GALPROP collabora-

tion [41]. Since we will be comparing our predictions to the Fermi LAT measurements

of the extragalactic diffuse gamma-ray emission [39], we need not concern ourselves

with the interstellar radiation field. On cosmological scales, the only significant com-

ponent of the radiation field is due to the cosmic microwave background. To compute

the gamma-ray flux from inverse Compton scattering on cosmological scales, we will

follow the prescription given in Ref. [42].

Since typical CMB photon energies are relatively small, we can work in the Thom-

son (non-relativistic) limit for which the radiated power is given by

PIC (Eγ, Ee, z) =
3σT

4γ2
Eγ

∫ 1

0

dy
nCMB

(
E0
γ(y), z

)

y

(
2y log y + y + 1− 2y2

)
, (2.26)

where σT ' 6.65× 10−25 cm2 is the Thomson cross section,

y =
Eγ

4γ2E0
γ

(2.27)
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and

γ =
Ee
me

. (2.28)

From Ref. [33], the rate of energy loss due to inverse Compton scattering in the

Thomson limit is given by

bIC =
4

3

(
E

me

)2

σTρCMB (1 + z)4 , (2.29)

where ρCMB ' 0.26 eV/cm3. Then the emissivity of gamma-rays from inverse Comp-

ton scattering is given by

jIC (E ′, z′) =

∫ mψ/2

me

dEe
PIC

(
E ′γ, Ee, z

′)

bIC (Ee, z′)

∫
dĒe

dNe

dĒ

ρ̄(z′)

mψτψ
, (2.30)

where ρ̄(z) = ρ̄0(1 + z)3 with ρ̄0 ' 1.15 × 10−6 GeV/cm3 and dNe/dE is the en-

ergy spectrum of electrons and positrons produced in the dark-matter decay. In the

Thomson limit, we can simplify the expression for the emissivity to

jIC (E ′, z′) = (1 + z)2 jIC

(
E ′

1 + z′
, 0

)
. (2.31)

Then the gamma-ray flux from extragalactic inverse Compton scattering is given by

(
dΦIC

dEγdΩ

)(ex.)

IC

=
c

Eγ

∫ ∞

0

dz′
1

H(z′)(1 + z′)4

jIC

(
E ′γ, z

′)

4π
e−τ(E′γ ,z

′) , (2.32)

where E ′γ = Eγ(1 + z′), H(z′) is given by Eq. (2.24) and τ(E ′γ, z
′) is the optical

depth of the universe for gamma rays collected today with energy Eγ = E ′γ/(1 + z′).

Several processes contribute to the value of the optical depth. In the energy range

1 Mev . E . 1 TeV, the factor e−τ(E′γ ,z
′) accounts for the absorption of gamma

rays by pair production on baryonic matter, photon-photon scattering on ambient

photon background radiation (PBR) and pair production on ambient PBR [42]. From
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Ref. [43], we see that e−τ is close to 1 in the region of interest, so we will assume

e−τ = 1 from this point on.
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Chapter 3

Three-Body Decays

In the propagation models described in Ch. 2, the only remaining undetermined

quantities are mψ, τψ and dNk/dE where k is meant to represent electrons, positrons,

neutrinos, antineutrinos or photons. The energy spectra, dNk/dE are determined by

mψ and by a set of parameters which I describe in the following section. We consider

decays of the form

ψ → `+
i `
−
j ν , (3.1)

where `±i is a charged lepton of the ith generation. At this point, the ν need not

be a neutrino; it can be any neutral fermion which is much lighter than ψ. The

exact nature of this light neutral state will be irrelevant for the e± and gamma-ray

analyses since its effect on the results presented in those sections will come solely from

kinematics. For the sake of convenience, however, we will refer to ν as a neutrino.

We focus on the simplest scenario, in which there are no additional decay channels

involving the charge conjugate of ν, and consider the possible four-fermion operators

that contribute to the decays of interest. Note that the production of a neutrino

in the primary decay may have interesting phenomenological consequences (see, e.g.,

Ref. [17]), which provides a separate motivation for our three-fermion final state.
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3.1 Four-Fermion Operators

The problem of paramterizing an unknown decay amplitude of one spin-1/2 particle

to three distinct spin-1/2 decay products was encountered in the study of muon decay,

before the Standard Model was well-established. The most general decay amplitude

M can be parameterized by [20]

iM = ig
∑

i

[ū(p0)Oiuψ]
[
ū(p−)Oi(ci + c′iγ

5)v(p+)
]
, (3.2)

where p± and p0 are the momenta of the decay products, labeled according to their

electric charge, and the Oi, i = 1 · · · 5 are elements of the set of linearly independent

matrices

O = {1, γµ, σµν , γµγ5, γ5} . (3.3)

The ci and c′i are complex coefficients. Terms involving the contraction of spinor

indices that link different pairs of spinor wave functions can be recast in the form of

Eq. (3.2) via Fierz transformations. Since the final state particles are much lighter

than the dark matter candidate (which is at the TeV scale), we can safely neglect

their masses.

Since the neutral final state particle is stable, the energy spectra of electrons and

positrons that are observed at cosmic-ray observatories are determined by the energy

spectra of the the charged leptons, `+ and `−, that are produced in the primary decay;

this follows from the differential decay distribution

1

Γ

d2Γ

dE0dE±
=

1

64π3mψ

〈|M|2〉 , (3.4)

where 〈|M|2〉 is the spin-summed/averaged squared amplitude. This quantity can be

evaluated exactly from Eq. (3.2) using FeynCalc [21], and the `± energy distribution

can be computed by integrating over the neutral lepton energy E0. The result contains
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terms quadratic and cubic in E±; however, since the distribution must be normalized

to unity, the result has the following simple parametrization:

1

Γ

dΓ

dE±
=

1

mψ

E2
±

m2
ψ

[
ξ± +

(
64− 8

3
ξ±

)
E±
mψ

]
. (3.5)

Similarly, the neutrino energy distribution is given by

1

Γ

dΓ

dE0

=
1

mψ

E2
0

m2
ψ

[
ξ0 +

(
64− 8

3
ξ0

)
E0

mψ

]
. (3.6)

The requirement that these expressions remain positive over the kinematically acces-

sible range 0 ≤ Ei ≤ mψ/2 restricts the parameters ξ+, ξ− and ξ0 to fall within the

range

0 ≤ ξi ≤ 96 . (3.7)

The parameters ξ± and ξ0 may be expressed in terms of the operator coefficients ci

and c′i defined in Eq. (3.2):

ξj = 48
c†Nj c + c′†Nj c′

c†D c + c′†D c′
, (3.8)

where j = ±, 0, c = [c1, c2, c3, c4, c5]T and c′ = [c′1, c
′
2, c
′
3, c
′
4, c
′
5]T . The five-by-five

matrices Nj and D are given by

N± =




1 0 ∓2 0 0

0 6 0 ±2 0

∓2 0 40 0 ∓2

0 ±2 0 6 0

0 0 ∓2 0 1




, (3.9)
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N0 =




2 0 0 0 0

0 4 0 0 0

0 0 16 0 0

0 0 0 4 0

0 0 0 0 2




(3.10)

and

D =




1 0 0 0 0

0 4 0 0 0

0 0 24 0 0

0 0 0 4 0

0 0 0 0 1




. (3.11)

3.2 Single Differential Decay Distributions

Since we have a relatively simple expression, Eq. (3.5), for the most general decay

distributions for the charged leptons in the decay ψ → `+
i `
−
j ν, it would be preferable

to work in terms of these single-differential decay distributions as opposed to the

double-differential decay distributions given by Eq. (3.4). In this section we will prove

that the energy spectra of electrons, positrons, neutrinos, antineutrinos and photons

created in the decay shower can be expressed solely in terms of single-differential

decay distributions. From a phenomenological point of view, then, there is no need

to bother with the double differential of Eq. (3.4); the decay is entirely characterized

by the single differentials

1

Γ

dΓ

dEk
, (3.12)

where k runs over the three decay products.
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The decay is completely characterized by the double-differential decay distribution

1

Γ

∂2Γ

∂E`+i ∂Eν
, (3.13)

where E`+i is the energy of the `+
i particle in the initial three-body decay – not the

energy of any `+
i particles created in the ensuing shower – and Eν is the energy of the

neutrino in the initial three-body decay – not the energy of any neutrinos created in

the ensuing shower. For any E`+i and Eν , let

dn
(
E`+i , Eν

)

dEe+
(3.14)

be the energy spectrum of positrons for that particular set of `+
i , `−j and ν energies.

Note that E`−j = Mψ−
(
E`+i + Eν

)
, so it is only necessary to specify two of the three

energies. There is implicit Ee+ dependence in Eq. (3.14). The total positron energy

spectrum is then given by

dN

dEe+
=

∫∫
dE`+i dEν

1

Γ

∂2Γ

∂E`+i ∂Eν

dn
(
E`+i , Eν

)

dEe+
, (3.15)

where the integrations run over all kinematically allowed values of E`+i and Eν .

The double differential given in Eq. (3.13) above is a function of E`+i and Eν . This

is a vestige of the tendency to integrate out the E`−j dependence first when evaluat-

ing Γ. But we could just as well characterize the decay by the double differential

1

Γ

∂2Γ

∂E`+i ∂E`
−
j

. (3.16)
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Then, for any E`+i and E`−j , we can define

dñ
(
E`+i , E`

−
j

)

dEe+
(3.17)

to be the positron energy spectrum for that particular set of `+
i , `−j and ν energies.

And so, echoing Eq. (3.15), the total positron energy spectrum is given by

dN

dEe+
=

∫∫
dE`+i dE`

−
j

1

Γ

∂2Γ

∂E`+i ∂E`
−
j

dñ
(
E`+i , E`

−
j

)

dEe+
, (3.18)

where the integrations run, as above, over all kinematically allowed values of E`+i

and E`−j .

Now,

dñ
(
E`+i , E`

−
j

)

dEe+
(3.19)

is the energy spectrum of positrons created in the decays of an `+
i with energy E`+i ,

an `−j with energy E`−j and a ν with energy Eν = Mψ −
(
E`+i + E`−j

)
. This is the

same as the sum of the energy spectra of the `+
i decay, the `−j decay and the ν decay.

That is, once we have fixed the energies of the `+
i , the `−j and the ν, we can consider

their decays independently. We then have

dñ
(
E`+i , E`

−
j

)

dEe+
=
dñ`+i

(
E`+i

)

dEe+
+
dñ`−j

(
E`−j

)

dEe+
+
dñν (Eν)

dEe+
, (3.20)

where the terms with only one argument are the positron energy spectra for the

decays of each individual particle at a particular energy. Note that

dñν (Eν)

dEe+
= 0 , (3.21)
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so
dñ
(
E`+i , E`

−
j

)

dEe+
=
dñ`+i

(
E`+i

)

dEe+
+
dñ`−j

(
E`−j

)

dEe+
. (3.22)

Now we substitute Eq. (3.22) into the double integral [Eq. (3.18)] to obtain

dN

dEe+
=

∫∫
dE`+i dE`

−
j

1

Γ

∂2Γ

∂E`+i ∂E`
−
j



dñ`+i

(
E`+i

)

dEe+
+
dñ`−j

(
E`−j

)

dEe+


 , (3.23)

where, as above, the integral runs over all kinematically allowed values of E`+i and

E`−j . Then we can break the integral into two parts and choose a different order of

integration for each term. This gives

dN

dEe+
=

∫ Mψ/2

0

∫ Mψ/2

Mψ/2−E`+
i

dE`−j dE`
+
i

1

Γ

∂2Γ

∂E`+i ∂E`
−
j

dñ`+i

(
E`+i

)

dEe+

+

∫ Mψ/2

0

∫ Mψ/2

Mψ/2−E`−
i

dE`+i dE`
−
j

1

Γ

∂2Γ

∂E`+i ∂E`
−
j

dñ`−j

(
E`−j

)

dEe+
.

(3.24)

Note that, in the integrand of the first term, the dependence on E`−j comes entirely

from the double-differential decay distribution. Similarly, in the integrand of the

second term, the dependence on E`+i comes entirely from the double-differential decay

distribution. This was the motivation for the different orders of integration. It is now

easy to see that the inner integrations (over E`−j in the first term on the right and

over E`+i in the second term) simply turn the double-differential decay distributions

into single-differential decay distributions; this gives

dN

dEe+
=

∫ Mψ/2

0

dE`+i
1

Γ

dΓ

dE`+i

dñ`+i

(
E`+i

)

dEe+
+

∫ Mψ/2

0

dE`−j
1

Γ

dΓ

dE`−j

dñ`−j

(
E`−j

)

dEe+
. (3.25)

The first term on the right is the positron energy spectrum due to the decays of `+
i
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particles with an energy distribution given by

1

Γ

dΓ

dE`+i
, (3.26)

and the second term on the right is the positron energy spectrum due to the decays

`−j particles with an energy distribution given by

1

Γ

dΓ

dE`−j
. (3.27)

Therefore, given expressions for Eq. (3.26) and Eq. (3.27), we can compute dN/dEe+

without any reference to the underlying double differential, Eq. (3.4).

The analysis is obviously identical for the electron energy spectrum. For photons,

it will also be the same, since the ν is stable and, hence, Eqs. (3.21) and (3.25) still

holds with e+ → γ. If we assume that ν is a neutrino (as opposed to an antineutrino),

then the antineutrino energy spectrum, dN/dEν̄ , will similarly be given by Eq. (3.25)

with e+ → ν̄. For neutrinos, the analog of Eq. (3.21) is

dñν (E ′ν)

dEν
= δ (Eν − E ′ν) . (3.28)

Then, by a similar analysis, the analog of Eq. (3.25) is

dN

dEν
=

∫ Mψ/2

0

dE`+i
1

Γ

dΓ

dE`+i

dñ`+i

(
E`+i

)

dEν
+

∫ Mψ/2

0

dE`−j
1

Γ

dΓ

dE`−j

dñ`−j

(
E`−j

)

dEν
+

1

Γ

dΓ

dEν
.

(3.29)

Once again, we see that the single differentials completely characterize the energy

spectrum. The only difference is that we must now pay attention to the single-

differential decay distribution of the ν.
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Chapter 4

Results

We consider dark-matter decays of the form ψ → `+
i `
−
j ν where `±i is a charged lepton

of the ith generation and ν is a neutrino. We will not specify a neutrino flavor, since,

as we will see below, it is of little significance. For each decay, we used PYTHIA [22]

to simulate the shower of decays down to stable particles. It is then a simple matter

to extract the energy spectra of electrons, positrons, neutrinos, antineutrinos and

photons created in the process as a whole.

There are nine (3× 3) possible decay channels, and we require

∑

i,j

B(`+
i `
−
j ν) = 1 , (4.1)

where B(`+
i `
−
j ν) is the branching fraction for ψ → `+

i `
−
j ν. Then we have

dNe±

dE
=
∑

i,j

B(`+
i `
−
j ν)

(
dNe±

dE

)

ij

, (4.2)

where (dNe±/dE)ij is the electron/positron energy spectrum for ψ → `+
i `
−
j ν. The en-

ergy spectra of neutrinos, antineutrinos and photons are given by similar expressions.

In Sec. 3.1, we showed that the energy spectra of the leptons in the decay ψ →

`+
i `
−
j ν are characterized by the ordered triplet (ξ+, ξ−, ξ0), where 0 ≤ ξi ≤ 96. In
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Sec. 3.2, we showed that (dNe±/dE)ij, (dNν̄/dE)ij, and (dNγ/dE)ij are entirely de-

termined by mψ and the ordered pair (ξ+, ξ−). For (dNν/dE)ij, we also need to know

ξ0. For decays involving more than one channel (e.g., ψ → e+µ−ν and ψ → µ+τ−ν),

we assume a constant (ξ+, ξ−, ξ0). Then, since the branching fractions are subject to

Eq. (4.1), we can determine all of the dN/dE by specifying mψ, ξ+, ξ−, ξ0 and eight

of the nine branching fractions.

To summarize, when we use the cosmic-ray propagation models described in Ch. 2,

the resulting electron, positron, neutrino, antineutrino and photon fluxes measured

at the top of the Earth’s atmosphere are determined by 12 parameters: mψ, ξ+, ξ−,

ξ0 and eight of the nine branching fractions.

4.1 Electron-Positron Flux

For the e± fluxes, ξ0 is irrelevant, since ν is stable. So rather than talking about the

triplet (ξ+, ξ−, ξ0), we need only concern ourselves with the pair (ξ+, ξ−).

For each of the decay scenarios considered below, we fixed (ξ+, ξ−) and the branch-

ing fractions and then performed a χ2 fit to the PAMELA, Fermi LAT, H.E.S.S. 2008

and H.E.S.S. 2009 data with mψ and τψ as fitting parameters. We allowed mψ to vary

in increments of 500 GeV, and we allowed τψ to vary in increments of 0.1×1026 s. We

consider the range E > 10 GeV, where the effects of a TeV-scale dark-matter candi-

date are relevant. Where the high-energy and low-energy Fermi LAT data overlap,

we have plotted only the high-energy data. We omit from our figures the H.E.S.S.

bands of systematic uncertainty.

Leaving mψ and τψ as free variables, we find that the results are relatively insen-

sitive to the choice of (ξ+, ξ−). This is demonstrated for the pure decay ψ → τ+τ−ν

in Fig. 4.1 where the envelope of possible cosmic-ray spectra is shown; that is, when

the (ξ+, ξ−) parameter space is sampled, all of the resulting curves fall between those
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Figure 4.1: The envelope of possible cosmic-ray spectra for ψ → τ+τ−ν. Ranges of
the fit parameters are given in the text.

plotted in Fig. 4.1. For the example shown, mψ varies between 6.5 and 8.5 TeV

while τψ varies between 0.5 × 1026 s and 0.7 × 1026 s; the χ2 per degree of freedom

(χ2/d.o.f.) remains between 0.5 and 0.6. We performed the same analysis on the

other decay scenarios discussed below and found a similar behavior. As such, we take

(ξ+, ξ−) = (48, 48) for the remaining results that we present.

As a starting point, we show the cosmic-ray spectra for some charged-lepton-

flavor-conserving decays in Fig. 4.2. We consider the pure decays ψ → µ+µ−ν and

ψ → τ+τ−ν, and we also consider the flavor-democratic decay for which B(`+
i `
−
i ν) =

1/3 for all i. For ψ → µ+µ−ν, we have a χ2/d.o.f. of approximately 0.9. For ψ →

τ+τ−ν, we have χ2/d.o.f. ≈ 0.6. And for the flavor-democratic ψ → `+`−ν, we

have χ2/d.o.f. ≈ 0.8. These are to be contrasted with the flavor-violating decays of

Fig. 4.3.

We consider three classes of flavor-violating decays:

ψ → e±µ∓ν, ψ → e±τ∓ν and ψ → µ±τ∓ν. (4.3)

Each class contains two decay channels (e.g., ψ → e+µ−ν and ψ → e−µ+ν). We
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Figure 4.2: Positron fraction and total electron-positron flux for some charged-lepton-
flavor-conserving decays. Best fits are shown, corresponding to the following masses
and lifetimes: for ψ → µ+µ−ν, mψ = 3.5 TeV and τψ = 1.5× 1026 s; for ψ → τ+τ−ν,
mψ = 7.5 TeV and τψ = 0.6 × 1026 s; for the flavor-democratic decay ψ → `+`−ν,
mψ = 2.5 TeV and τψ = 1.9× 1026 s.

consider all six of the pure decays, i.e., decays involving only one channel. We also

consider mixtures of decay channels belonging to the same class; some representative

choices are shown in Fig. 4.3. Note that, for fixed mψ and τψ, the total electron-

positron flux – which does not distinguish between the two electric charges – is the

same for any two decays belonging to the same class. For this reason, we require

only one plot of the total flux in Fig. 4.3. We find that the χ2 is relatively flat as

a function of the branching fraction within each class of decays: over the range of

possible branching fractions, we find that the χ2/d.o.f. varies by no more than 10%

from 1.2, 1.1 and 0.6, for ψ → e±µ∓ν, ψ → e±τ∓ν, and ψ → µ±τ∓ν, respectively.

Different choices than the ones shown for the branching fraction within a given class

describe the existing data well but provide different predicted spectra that interpolate

between the curves shown. Note that the distinctive dip in the µ+e−ν and τ+e−ν

positron fractions around 1 TeV is due to the hard electron produced in the initial

decay; this greatly enhances the electron to positron ratio in the high energy bins,

leading to a suppression in the positron fraction for fixed total flux.
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Figure 4.3: Positron fraction and total electron-positron flux for some charged-lepton-
flavor-violating decays with various sets of branching fractions. Best fits are shown,
corresponding to the following masses and lifetimes: for ψ → e±µ∓ν, mψ = 2.0 TeV
and τψ = 2.9 × 1026 s; for ψ → e±τ∓ν, mψ = 2.0 TeV and τψ = 2.4 × 1026 s; for
ψ → µ±τ∓ν, mψ = 4.5 TeV and τψ = 1.0× 1026 s.
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The results presented in this section show that a variety of possible lepton-flavor-

violating decay modes for a spin-1/2, charge-asymmetric dark-matter candidate can

describe existing data well, as quantified by the χ2 per degree of freedom for the best

fits to the data. Significantly, the results for the predicted positron fraction differ

substantially for energies above ∼ 100 GeV, the maximum for which the PAMELA

experiment is sensitive. In some cases, more precise measurement of the total electron-

positron flux around 1 TeV may also provide a means of distinguishing these scenarios.

Future data from experiments like AMS-02 [18], which can probe these energy ranges

of the predicted spectra, may determine whether the possibilities discussed in this

section present viable descriptions of the cosmic-ray spectrum.

4.2 Gamma-Ray Flux

We compute the extragalactic gamma-ray flux due to dark-matter decays by using the

prescription given in Sec. 2.3. This is to be compared to the Fermi LAT extragalactic

gamma-ray background (EGB) data [39]. Contributions to this background may

include active galactic nuclei, starburst galaxies and gamma-ray bursts. Since there

is no widely accepted model for the extragalactic gamma-ray background, our goal

in this section is not to fit the data but simply to place an upper bound on the

gamma-ray flux from dark-matter decay.

In Fig. 4.4, we have plotted the gamma-ray fluxes for several decays discussed

in Sec. 4.1 together with the Fermi LAT extragalactic gamma-ray background data.

In each case, we have used the best-fit values for mψ and τψ. Note that the photon

flux from ψ → `+
i `
−
j ν is the same as the photon flux from ψ → `+

j `
−
i ν. We have also

separated the gamma-ray flux from dark matter into its two components: prompt (i.e.,

local) gamma-rays and gamma-rays from inverse Compton scattering. We see that

inverse Compton scattering dominates at lower energies while the prompt gamma-
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Figure 4.4: Gamma-ray flux for some flavor-conserving and flavor-violating decays.
The values for mψ and τψ are the same as those given in Figs. 4.2 and 4.3.
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rays dominate at higher energies. Crucially, we see no contradiction with the Fermi

LAT data; the fluxes from dark matter are nowhere in excess of the fluxes observed

by the Fermi collaboration.

Of course, it is possible that dark-matter decays occur but are not solely respon-

sible for the e± excesses observed by PAMELA and Fermi LAT. In this case, we can

use the Fermi LAT gamma-ray data to exclude regions of the parameter space. In

Sec. 4.3, we show exclusion plots for a representative sample of decays. These plots

show the regions of the parameter space spanned by mψ and τψ that are in conflict

with the Fermi gamma-ray data at a statistical significance of 3σ or more.

4.3 Neutrino Flux

Following Ref. [35], we compute the predicted number of neutrino events from galactic

dark-matter decay seen at IceCube/DeepCore after 5 years of running. For a given

dark-matter mass, we find the lifetime below which IceCube/DeepCore would provide

a 2σ exclusion or a 5σ discovery. We consider the νµ+ν̄µ flux. Since the neutrinos from

dark-matter decay will have traveled a variety of large distances, we assume that the

ratio of flavors if 1 : 1 : 1 upon arrival at the Earth due to neutrino oscillations. For

this reason, the flavor of the ν in the initial three-body final state is of no significance;

there is equal probability that this ν will oscillate into any of the three flavors as it

travels to the Earth. The same is true of all the neutrinos created in the decay showers

of the charged leptons `+
i and `−j . We can, therefore, take

dNνµ

dE
=

1

3

∑

i

dNνi

dE
(4.4)

and

dNν̄µ

dE
=

1

3

∑

i

dNν̄i

dE
. (4.5)
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mψ (GeV) Emin. (GeV) Emax. (GeV)
1000 150 800
2000 300 1500
10000 1500 8000

Table 4.1: Energy bins for the neutrino flux.

IceCube/DeepCore has a limited energy resolution. In keeping with Ref. [35], we use

the energies bins shown in Table 4.1.

Some results for charged-lepton-flavor-conserving decays are shown in Fig. 4.5;

some results for charged-lepton-flavor-violating decays are shown in Fig. 4.6. We have

actually combined the neutrino exclusion plots with the gamma-ray exclusion plots.

Additionally, we have plotted the points which provide good fits to the PAMELA and

Fermi LAT e± data as discussed in Sec. 4.1.

The “kinks” that appear at Mψ = 2000 GeV come as a result of following the

analysis of Ref. [35] in which no masses between 1000 GeV and 2000 GeV nor between

2000 GeV and 10000 GeV are considered. In order to compare our results to those of

Ref. [35], we only calculate the bounds for the masses given in Table. 4.1. We have

connected these points in Figs. 4.5 and 4.6 so as to give some indication of the shape of

the exclusion line over the range 1000 GeV ≤Mψ ≤ 10000 GeV. Note, however, that

the exclusion line is not uniquely defined since there is a dependence on the energy

bins (Emin. and Emax. as in Table. 4.1); we use the energy bins given in Ref. [35].

32



  

        

Mψ (GeV)

τ
ψ
(s
)

ψ → ℓ+ℓ−ν

1026

103 104

PAMELA/Fermi Pre fe rred
3σ γ -Ray Exc l.
2σ ν Exc l. (5 Years)
5σ ν Det. (5 Years)

  

        

Mψ (GeV)
τ
ψ
(s
)

ψ → µ+µ−ν

1026

103 104

PAMELA/Fermi Pre fe rred
3σ γ -Ray Exc l.
2σ ν Exc l. (5 Years)
5σ ν Det. (5 Years)

  

        

Mψ (GeV)

τ
ψ
(s
)

ψ → τ +τ −ν

1026

103 104

PAMELA/Fermi Pre fe rred
3σ γ -Ray Exc l.
2σ ν Exc l. (5 Years)
5σ ν Det. (5 Years)

Figure 4.5: Exclusion/detection plots for some flavor-conserving decays. The exclu-
sion/detection regions are below the curves. The solid line is the 3σ exclusion line
from Fermi LAT gamma-ray data. The dashed line is the potential 2σ exclusion line
from IceCube after 5 years of running, and the dot-dashed line is the potential 5σ
discovery line from IceCube after 5 years of running. See the text for an explanation
of any “kinks” that appear.
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Figure 4.6: Exclusion/detection plots for some flavor-violating decays. Same as
Fig. 4.5.
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Chapter 5

Conclusion

We have analyzed the cosmic-ray signals of possible three-body dark-matter decays as

a response to the electron-positron excess observed by the PAMELA and Fermi LAT

collaborations. We assumed decays of the form ψ → `+
i `
−
j ν where `±i is a charged

lepton of the ith generation and ν is a neutrino (as opposed to an antineutrino).

We showed that the e± energy spectra resulting from these dark-matter decays

can be characterized by two parameters: ξ+ and ξ− with 0 ≤ ξ± ≤ 96. We scanned

the ξ± parameter space and found that it is always possible to obtain good fits to

the PAMELA and Fermi LAT by a suitable choice of the dark-matter mass, mψ, and

lifetime, τψ.

We also showed that the ν energy spectra resulting from these dark-matter decays

can be characterized by three parameters: ξ+, ξ− and ξ0. We argued that the flavor

of the hard ν produced in the initial dark-matter decay is of no consequence since

there is roughly equal probability that it will oscillate into any other flavor as it travels

through the Milky Way Galaxy to the Earth. We then calculated the expected νµ+ ν̄µ

flux from dark-matter decay and determined whether IceCube/DeepCore would be

able to detect or exclude this flux after five years of running.

Finally, we computed the expected gamma-ray flux from dark-matter decays.
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Since the hard ν is stable, the γ flux is characterized by ξ+ and ξ− only. There

are two main contributions to this flux. The first comes from gamma rays produced

in the dark-matter decay chain. Now, the electrons and positrons created in the de-

cay chain can also contribute to the gamma-ray flux by undergoing inverse Compton

scattering off of ambient photons. This is the second contribution to the gamma-ray

flux. We computed the isotropic extragalactic gamma-ray flux due to dark-matter

decays and compared it to measurements made by the Fermi LAT collaboration. We

find that the flux from dark-matter decays does not conflict with the Fermi LAT data.

In conclusion, three-body dark-matter decays of the form ψ → `+
i `
−
j ν constitute a

possible explanation for the electron-positron excess observed by the PAMELA and

Fermi LAT collaborations.
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Appendix A

PYTHIA 8.1 Code

Below is a sample program for the generation of electron-positron energy spectra

coming from decays involving muons. The program is written in C++ and uses the

PYTHIA 8.1 package [22]. This particular program generates positron and electron

spectra for the decay of an antimuon with a single-differential decay distribution that

goes as E2 (with the appropriate normalization coefficient). There is a complemen-

tary program that does the same for a decay distribution that goes as E3. These two

spectra can then be used to form linear combinations corresponding to any choice for

ξ+. The spectra of electrons and positrons due to the decay of a muon (as opposed

to an antimuon) can be found by charge symmetry; in this case, the linear combina-

tions correspond to a choice for ξ−. Similar programs were written for the decays of

positrons and antitaus and also for the energy spectra of neutrinos and photons.

1 //Create a dark matter particle with a given mass and allow

2 it to decay to electrons and positrons.

3 //Generate a large number of events and create a histogram

4 of electron and positron energies.

5 //Normalize this histogram to the number of events and

6 export to a text file.

7 //There is a .cmnd file which sets the center of mass energy

8 and the allowed decays.

9 //We use a Generic Resonance to simulate the dark matter

10 particle.
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11

12 //The decay can have different energy spectra depending on

13 the model chosen.

14 //Since the single-differential decay distributions are

15 linear combinations of E^2 and E^3, we generate

16 electron-positron energy spectra for E^2 (Gen1) and E^3

17 (Gen2) separately. Outside of PYTHIA, one can take linear

18 combinations to get the desired energy spectra.

19

20 //We generate two energy spectra: positrons created by the

21 antilepton and electrons created by the antilepton. The

22 electrons/positrons created by the lepton can be

23 determined by symmetry.

24

25

26 #include "Pythia.h"

27 #include <fstream>

28

29 using namespace Pythia8;

30

31 //=========================================================

32

33

34 // A derived class for (e+ e- ->) GenericResonance ->

35 various final states.

36

37 class Sigma1GenRes : public Sigma1Process {

38

39 public:

40

41 // Constructor.

42 Sigma1GenRes() {}

43

44 // Evaluate sigmaHat(sHat): dummy unit cross section.

45 virtual double sigmaHat() {return 1.;}

46

47 // Select flavour. No colour or anticolour.

48 virtual void setIdColAcol() {setId( -11, 11, 999999);

49 setColAcol( 0, 0, 0, 0, 0, 0);}

50

51 // Info on the subprocess.

52 virtual string name() const {return "GenericResonance";}

53 virtual int code() const {return 9001;}

54 virtual string inFlux() const {return "ffbarSame";}

55
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56 };

57

58 //=========================================================

59

60

61

62 //Set up a command for exporting arrays to text files

63 void exportToFile(double counter1[], int counterSize, string

64 filename)

65 {

66 ofstream myfile;

67 myfile.open (filename.c_str());

68 for(int i = 0; i < counterSize; i++)

69 myfile << counter1[i] << "\n";

70 myfile.close();

71 }

72

73

74 //Set the center of mass energy -- make sure to coordinate

75 with the .cmnd file

76 #define eCM 3000

77 int halfeCM = 0.5*eCM;

78

79 //Choose the number of events to generate

80 #define nEvent 2000000

81

82 //Choose the desired number to be selected

83 #define nDesired 1000000

84

85 //Choose the size of each bin (in GeV) for the electron and

86 positron histograms

87 #define binSize 0.1

88

89

90

91 int main() {

92

93 // Pythia generator.

94 Pythia pythia;

95

96 // A class to generate the fictitious resonance initial

97 state.

98 SigmaProcess* sigma1GenRes = new Sigma1GenRes();

99

100 // Hand pointer to Pythia.
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101 pythia.setSigmaPtr( sigma1GenRes);

102

103 // Read in the rest of the settings and data from a

104 separate file.

105 pythia.readFile("psimu+mu-nu3000.cmnd");

106

107 // Initialization.

108 pythia.init();

109

110 // Extract settings to be used in the main program.

111 int nList = pythia.mode("Main:numberToList");

112 int nShow = pythia.mode("Main:timesToShow");

113 int nAbort = pythia.mode("Main:timesAllowErrors");

114

115

116 cout << " " << endl;

117 cout << " " << endl;

118

119

120

121 //Initialize the positron and electron histograms

122 //The histograms count positron and electron energies

123 between 0 GeV and halfeCM GeV with a bin size defined

124 above

125 int histSize = (halfeCM + 0.0)/binSize;

126 int posHist[histSize];

127 int elHist[histSize];

128 int muHist[histSize];

129 for (int n = 0; n < histSize; ++n) {

130 posHist[n] = 0;

131 elHist[n] = 0;

132 muHist[n] = 0;

133 }

134

135

136 //Initialize the mu+ counter and the mu+ energy spectrum vector.

137 int muCounter[histSize];

138 double Pmu[histSize];

139

140

141 //Set energy spectrum vector and mu+ counter

142 for (int n = 0; n < histSize; ++n) {

143 muCounter[n] = 0;

144 double E1 = (n + 0.0)*binSize;

145 double E2 = (n + 1)*binSize;
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146 Pmu[n] = (8/(pow(eCM,3)))*(pow(E2,3) - pow(E1,3));

147 }

148

149

150 //Check that the energy spectrum vector is properly normalized

151 double PmuCheck = 0;

152 for (int i = 0; i < histSize; ++i) {

153 PmuCheck = PmuCheck + Pmu[i];

154 }

155 cout << " " << endl;

156 cout << "Check that energy spectrum is normalized: Sum

157 of probabilities = " << PmuCheck << endl;

158 cout << " " << endl;

159 cout << " " << endl;

160

161

162 //Number of events selected to contribute to the histograms

163 int nSelected = 0;

164

165 //Initialize the number of multiple-positron events listed

166 int multipleslist = 0;

167

168

169 //Begin event loop

170 int nPace = max(1, nEvent / max(1, nShow) );

171 int iAbort = 0;

172 for (int iEvent = 0; iEvent < nEvent; ++iEvent) {

173 if (nSelected < nDesired) {

174 if (nShow > 0 && iEvent%nPace == 0)

175 cout << " Now begin event " << iEvent << endl;

176

177 //Generate events. Quit if many failures.

178 if (!pythia.next()) {

179 if (++iAbort < nAbort) continue;

180 cout << " Event generation aborted prematurely, owing to

181 error! \n";

182 break;

183 }

184

185 //List first few events

186 if (iEvent < nList) {

187 cout << " Random Event " << iEvent + 1 << endl;

188 pythia.event.list();

189 cout << " " << endl;

190 cout << " " << endl;
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191 cout << " " << endl;

192 cout << " " << endl;

193 }

194

195 //Initialize mu+ energy at a value not covered by the

196 energy spectrum vector;

197 //the positrons/electrons will not be counted unless this

198 value changes

199 int nEmu = (eCM + 1)/binSize;

200

201 //Initialize the mu+ number (from the event record)

202 int muNo = 0;

203

204 //Pick out the mu+ energy

205 //This is the original mu+ -- NOT any produced in the

206 subsequent shower

207 for (int i = 0; i < pythia.event.size(); ++i) {

208 if (pythia.event[i].mother1() == 5) { //Only select

209 particles created by the Generic Resonance

210 if (pythia.event[i].id() == -13) { //mu+

211 muNo = i; //Record mu+ number

212 double Emu = pythia.event[i].e();

213 for (int n = 0; n < histSize; ++n) {

214 if (Emu >= (n+0.0)*binSize && Emu < (n+1)*binSize) {

215 nEmu = n;

216 }

217 }

218 }

219 }

220 }

221

222 //Determine the number of positrons produced

223 int multiplescount = 0;

224 for (int i = 0; i < pythia.event.size(); ++i) {

225 if (pythia.event[i].isFinal() && pythia.event[i].id() == -11) {

226 multiplescount = multiplescount + 1;

227 }

228 }

229 int nMultiple = 6;

230 int listq = 0;

231 if (multiplescount == nMultiple && multipleslist < 1) {

232 multipleslist = multipleslist + 1;

233 pythia.event.list();

234 listq = 1;

235 }
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236

237

238 //Pick out positron energy -- but only if the mu+ energy

239 was changed to an allowed value

240 if (nEmu < (eCM + 1)/binSize) {

241 if (muCounter[nEmu] < ((nDesired + 0.0)*Pmu[nEmu] - 0.5)) {

242 muHist[nEmu] = muHist[nEmu] + 1;

243 nSelected = nSelected + 1;

244 for (int i = 0; i < pythia.event.size(); ++i) {

245 if (pythia.event[i].isFinal()) { //only consider stable

246 particles

247 double eI = pythia.event[i].e();

248 if (pythia.event[i].id() == -11) { //e+

249 int q = i; //Trace mothers until muNo

250 for (int j = 0; j < pythia.event.size(); ++j) {

251 if (q > muNo) {

252 q = pythia.event.motherList(q)[0];

253 }

254 }

255 if (multiplescount == nMultiple && listq == 1) {

256 cout << " Particle " << i << " originated from particle "

257 << q << endl;

258 }

259 if (q == muNo) { //Only consider positrons created by

260 the mu+

261 for (int n = 0; n < histSize; ++n) {

262 //record positron energy in appropriate bin

263 if (eI >= (n + 0.0)*binSize && eI < (n + 1)*binSize) {

264 posHist[n] = posHist[n] + 1;

265 }

266 }

267 }

268 }

269 if (pythia.event[i].id() == 11) { //e-

270 int q = i; //Trace mothers until muNo

271 for (int j = 0; j < pythia.event.size(); ++j) {

272 if (q > muNo) {

273 q = pythia.event.motherList(q)[0];

274 }

275 }

276 if (multiplescount == nMultiple && listq == 1) {

277 cout << " Particle " << i << " originated from particle "

278 << q << endl;

279 }

280 if (q == muNo) { //Only consider electrons created by
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281 the mu+

282 for (int n = 0; n < histSize; ++n) {

283 //record electron energy in appropriate bin

284 if (eI >= (n + 0.0)*binSize && eI < (n + 1)*binSize) {

285 elHist[n] = elHist[n] + 1;

286 }

287 }

288 }

289 }

290 }

291 }

292 }

293 }

294

295 //Enter the event in the muCounter matrix

296 muCounter[nEmu] = muCounter[nEmu] + 1;

297 }

298 }

299

300

301 //Print a small section of the histogram

302 int nSampleMin = 0.0*(halfeCM + 0.0);

303 int nSampleMax = nSampleMin + 5;

304 cout << " " << endl;

305 cout << " " << endl;

306 cout << "----Sample Section of Histogram (" << nSampleMin

307 << " GeV <= E <= " << nSampleMax << " GeV)" << endl;

308 cout << " " << endl;

309 cout << left << setw(15) << "Energy (GeV)" << "No. e+" << endl;

310 cout << " " << endl;

311 for (int n = (nSampleMin + 0.0)/binSize; n < (nSampleMax +

312 0.0)/binSize; ++n) {

313 cout << left << setw(17) << (n + 0.5)*binSize << eHist[n]

314 << endl;

315 }

316

317

318 //Check that each muCounter entry is maxed out

319 int muCheck = 0;

320 for (int n = 0; n < histSize; ++n) {

321 if (muCounter[n] <= nDesired*Pmu[n] - 0.5) {

322 muCheck = muCheck + 1;

323 }

324 }

325
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326

327 //Print the number of generated and selected events

328 cout << " " << endl;

329 cout << " " << endl;

330 cout << " Number of Events Generated: " << nEvent << endl;

331 cout << " Number of Events Desired: " << nDesired << endl;

332 cout << " Number of Events Selected: " << nSelected << endl;

333 cout << " Number of muCounter entries NOT at maximum capacity:

334 " << muCheck << "/" << histSize << endl;

335

336

337 //Normalize e histograms to the bin size and the number of

338 selected events

339 double elHistNormalized[histSize];

340 double posHistNormalized[histSize];

341 for (int n = 0; n < histSize; ++n) {

342 elHistNormalized[n] = (elHist[n] + 0.0)/((nDesired +

343 0.0)*binSize);

344 posHistNormalized[n] = (posHist[n] + 0.0)/((nDesired +

345 0.0)*binSize);

346 }

347

348

349 //Send normalized histograms to external text files

350 exportToFile(posHistNormalized, histSize, "mu+Pos3000Gen1.txt");

351 exportToFile(elHistNormalized, histSize, "mu+El3000Gen1.txt");

352

353

354 return 0;

355 }
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